Part Number Hot Search : 
SMDA05 VCO55BE D100L MDHU122 0SERI PD70F MB89P147 TGA45
Product Description
Full Text Search
 

To Download EVL250W-ATX80PL Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  august 2010 doc id 17402 rev 1 1/45 an3203 application note EVL250W-ATX80PL: 80 plus ? silver 250w atx smps demonstration board introduction this application note describes the characteristics and performance of a 250 w wide range input and power factor corrected power supply designed to be used in an atx application. good electrical performance allows the meeting of the 80 plus ? silver efficiency targets. the converter consists of four main blocks: a pfc front-end stage using the l6563s pfc controller which generates the +400 v bus voltage. an ahb (asymmetrical half bridge) stage using the l6591 zvs half bridge controller which performs the conversion from the high voltage bus to the +12 v output providing insulation. two dc-dc post-regulator stages using the l6727 which obtain the +5 v and +3.3 v outputs from the +12 v bus. an auxiliary power supply (s tandby) stage using the vipe r27h in isolated flyback configuration which provides the +5 v_sb output with 10 w power capability. figure 1. 250 w atx smps demonstration board www.st.com
contents an3203 2/45 doc id 17402 rev 1 contents 1 main characteristics and cir cuit description . . . . . . . . . . . . . . . . . . . . . 5 2 asymmetrical half bridge operat ion . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.1 ahb typical waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2 short-circuit protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3 complete system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.1 overvoltage protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.2 load transients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.3 standby operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4 electrical performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.1 efficiency measurement and no-load consumpt ion . . . . . . . . . . . . . . . . . 19 4.2 thermal considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.3 harmonic content measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 5 conducted noise measur ements (pre-compliance test) . . . . . . . . . . . 26 6 parts list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 7 pfc coil specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 7.1 electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 8 ahb transformer specificatio n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 8.1 electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 8.2 mechanical aspect and pin numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 9 aux flyback transformer specifi cation . . . . . . . . . . . . . . . . . . . . . . . . . 40 9.1 electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 9.2 mechanical aspect and pin numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 10 pcb layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 11 revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
an3203 list of tables doc id 17402 rev 1 3/45 list of tables table 1. efficiency @ 115 vrms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 table 2. efficiency @ 230 vrms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 table 3. 80 plus? program efficiency levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 table 4. climate savers computing initiative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 table 5. no-load consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 table 6. low load efficiency @ 115 vrms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 table 7. low load efficiency @ 230 vrms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 table 8. pf vs. load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 table 9. EVL250W-ATX80PL bill of materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 table 10. winding characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 table 11. winding characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 table 12. winding characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 table 13. document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
list of figures an3203 4/45 doc id 17402 rev 1 list of figures figure 1. 250 w atx smps demonstration board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 figure 2. electrical diagram: input emi filter and pfc stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 figure 3. electrical diagram: ahb stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 figure 4. electrical diagram: dc-dc stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 figure 5. electrical diagram: standby stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 figure 6. ahb primary side key waveforms @ full load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 figure 7. ahb zero voltage switching detail @ full load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 figure 8. ahb transitions detail @ 20 % rated load. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 figure 9. ahb secondary side key waveforms @ full load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 figure 10. short-circuit behavior detail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 figure 11. load transient on +12 v output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 figure 12. load transient on +5 v output. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 figure 13. load transient on +3.3 v output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 figure 14. efficiency vs. o/p power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 figure 15. no-load consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 figure 16. efficiency at low loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 figure 17. fanless board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 figure 18. en61000-3-2 and jeita-miti measurements @ full load . . . . . . . . . . . . . . . . . . . . . . . . . 24 figure 19. en61000-3-2 and jeita-miti measurements @ 75 w in . . . . . . . . . . . . . . . . . . . . . . . . . 24 figure 20. pf vs. input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 figure 21. thd vs. input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 figure 22. ce peak measurement@115 vac and full load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 figure 23. ce peak measurement @ 230 vac and full load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 figure 24. ce average measurement@115 vac and full load. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 figure 25. ce average measurement@230 vac and full load. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 figure 26. electrical diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 figure 27. mechanical drawing (unit: mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 figure 28. electrical diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 figure 29. windings position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 figure 30. bottom view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 figure 31. electrical diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 figure 32. windings position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 figure 33. bottom view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 figure 34. top side silk screen and copper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 figure 35. bottom side silk screen and copper (mirror view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
an3203 main characteristics and circuit description doc id 17402 rev 1 5/45 1 main characteristics and circuit description here are the main characteristics of the power supply: input mains range: ? vin: 88 ~ 264 vrms ? f: 45 ~ 66 hz outputs: ? +12 vdc 2 % - 13.5 a ? +5 vdc 2 % - 12 a ? +3.3 vdc 2 % - 8 a ? +5 v_sb 2 % - 2 a standby consumption: < 0.2 w protection: ? short-circuit ?overload ? output overvoltage ? brownout pcb type and size: ?fr4 ? double side cu 70 m ? 148 x 120 mm safety: according to en60950 emi: according to en55022 - class b the EVL250W-ATX80PL demonstration board is made up of four main blocks, the schematics are shown in figure 2 , 3 , 4 , and 5 . the front-end pfc stage is realized using a boost topology working in line modulated fixed off time (lm-fot) mode, described in stmicroelectronics? application notes, an1792; design of fixed-off-time controlled pfc pre-regulators with the l6562 and an3142; solution for designing a 400 w fixed-off-time controlled pfc preregulator with the l6563s and l6563h. the lm-fot operation offers the advantage of having ccm operation (with lower rms current with respect to tm mode) without the need to use a complex and expensive controller. therefore, it is possible to use the simple l6563s, enhanced tm pfc controller, which integrates all the functions and protection, needed to control the stage, and an interface with the do wnstream dc-dc converter. the power stage of the pfc is realized with inductor l4, mosfet q1 and q2, diode d3, and capacitor c1. the lm-fot operation is obtained with components d6, r15, c10, r14, c9, r13, and q3. the pfc delivers a stable high voltage bus (+400 v nominal) to the downstream converters (ahb and flyback) and provides for the reduction of the current harmonics drawn from the mains, in order to meet the requirements of the european en61000-3-2 norm and the japanese jeita-miti norm. the second stage is an asymmetrical half bridge converter, driven by the l6591, a stmicroelectronics controller dedic ated to this topology. this ic integrates all the functions
main characteristics and circuit description an3203 6/45 doc id 17402 rev 1 and protection needed by the ahb stage and an interface for the pfc controller. the l6591 includes two gate drivers for the half bridge mosfets and a fixed frequency complementary pwm logic with 50 % maximum duty cycle with programmable dead time and current mode control technique. other features of this ic are pulse-by-pulse overcurrent protection, transformer saturation detection, overload protection (latched or auto-restart), and programmable soft-start. there is also a high voltage startup circuit, a burs t mode logic for low load operation, and the adaptive uvlo onboard, which are not used in this design as they are designed for adapter applications (see an2852). the following is a description of the power circuit of this stage. the half bridge switches q101 and q102 are connected to the output voltage of the pfc. the half bridge node drives the series of c101 (dc blocking capacitor) and the primary side of the transformer t1. this transformer has two secondary windings with a center tap connected to the secondary ground. the other ends are connected to the sources of mosfets q201 and q202, which replace output diodes in order to perform the synchronous rectification. two extra windings allow, with few external passive components, a self driven synchronous rectification to be obtained. this solution allows efficiency to be increased without the extra cost of a dedicated sr controller ic. q201 and q202 drains are connected to the output inductor l201 that, together with output capacitors c201 and c202, acts as a low pass f ilter. the signal +12 va is then post filtered (with l5 and c207) to obtain the +12 v output voltage. the design of transformer t1 is a trade-off between zvs operation and the required electrical performance/efficiency. zvs can be obtained acting on the magnetizing inductance or on the primary side leakage inductance. in more detail, zvs could be met by: decreasing the magnetizing inductance increasing the leakage inductance low values of magnetizing inductance generate high magnetizing current. this helps to reach zvs but it also increases the total primary side rms current and therefore the related losses. in this design a value of 500 h has been selected. on the other hand, zvs could be obtained by increasing the leakage inductance. if such a parameter is increased, the primary side current takes more time before reversing its direction and therefore zvs is more easily met. a high leakage inductance value leads to duty cycle losses, reducing the effective range of duty cycle usable. this creates problems with hold-up requirements and makes it necessary to work with very narrow duty cycles with nominal input voltage generating high rms currents in the circuit. a value of 12 h has been selected as the leakage inductance. because of these reasons, in this design z vs is always met at low side mosfet turn-on while it is met only for medi um-high loads at high side mosfet turn-on. even at medium- low loads q101 is turned on with a vds we ll below the half br idge input voltage. the l6591 line pin is used for startup sequen cing. it shares with the l6563s the voltage divider made up of r20, r21, r22, r29, and r26 that senses the pfc output voltage. the ahb stage is activated when the bulk voltage reaches about 380 v. the disable pin (latched protection) is driv en by the l6563s pwm_ latch pin and stops the ahb stage in case of pfc feedback disconnection. the oscillator is programmed in order to have a switching frequency of about 80 khz and to use the minimum dead time (about 310 ns).
an3203 main characteristics and circuit description doc id 17402 rev 1 7/45 the pfc_stop pin is the interface for the pfc controller, it is connected to the l6563s run pin through r104 and it stops the pfc operation (not latched) in case of overload, output short-circuit or transformer saturation detection. the +5 v and +3.3 v are obtained from the +12 va bus (ahb output) thanks to two dc-dc converters mounted on two daughter boards. these stages are driven by the l6727, single phase pwm controller. the topology is a standard step down. for more information please refer to the l6727; single phase pwm controller datasheet. the last stage is the auxiliary power supply t hat provides the +5 v_ sb output (2 a capability) and the vcc supply for the l6563s and l6591. it is realized with a standard flyback topology operating in ccm/dcm with fixed frequency using the viper27h. this stage takes the pfc output voltage as input and is always working when the mains is plugged in. the viper27h has all the protection needed to safely drive the standby stage. it protects the circuitry in case of overload, output short-circuit, or output overvoltage. all the other stages (and therefore the outputs +12 v, +5 v and +3.3 v) can be turned on / off using the signal ps_on. if it is disconnected or connected to gnd, the opto2 current is zero, q601 is open and the vcc of the l6563s and l6591 is zero. if ps_on is connected to +5 v_sb, the opto2 current turns q601 on. this bjt, together with the zener diode zd601, acts as a linear regulator and provides the supply to the pfc and ahb controllers. the same optocoupler is used to turn off the pfc and ahb stages in case of an overvoltage on one of the three main outputs. such protection is realized with three zener diodes (one for each output) that set the ovp thresholds. if one of the three output voltages goes over its threshold, the zener diode conducts and turns on the latch realized with q604 and q605. the current in opto2 is reduced to zero (overriding the ps_on information) and the l6563s and l6591 are turned off. only the +5 v_sb stays on and continues to keep the protection latched.
main characteristics and circuit description an3203 8/45 doc id 17402 rev 1 figure 2. electrical diagram: input emi filter and pfc stage am0251 8 v1
an3203 main characteristics and circuit description doc id 17402 rev 1 9/45 figure 3. electrical diagram: ahb stage am02519v1
main characteristics and circuit description an3203 10/45 doc id 17402 rev 1 figure 4. electrical diagram: dc-dc stage am02520v1
an3203 main characteristics and circuit description doc id 17402 rev 1 11/45 figure 5. electrical diagram: standby stage am02521v1
asymmetrical half bridge operation an3203 12/45 doc id 17402 rev 1 2 asymmetrical half bridge operation 2.1 ahb typical waveforms in figure 6 the primary side key waveforms during steady-state operation with full load applied are shown. figure 7 shows the detail of the two transitions during one switching cycle. the ahb stage has been designed to operate at about 80 khz with a nominal input voltage of 400 v (pfc output bus). the transformer design is the result of a trade-off between the half bridge mosfets zero voltage switching (zvs) operation requirements, the primary rms current, and duty cycle losses. in fact, zvs can be achieved by reducing the magnetizing inductance or increasing the leakage inductance. with the output power of this board, the first solution implies having very high rms primary current which leads to high losses. the second solution introduces the so called ?dut y cycle losses?. when the leakage inductance is de-magnetizing, the voltages on the secondary side windings are zero and therefore the output mean value is reduced with respect to the same half bridge duty cycle and negligible leakage inductance. duty cycle losses limit the hold-up capability of the power supply because they increase the minimum input voltage that guarantees output regulation. in this design the system works with zvs for both mosfets at full load. because of the intrinsic asymmetry of the topology the behavior of the two switches is different. when the load is reduced the low side mosfet always operates in zvs while the high side one starts loosing zvs. the high side mosfet never turns on with full bus voltage applied between its drain and source. as shown in figure 8 , even at 20 % of rated load the vds at turn-on is about 100 v, definitely lower compared with the 400 v of a hard switching solution. this design can therefore meet both efficiency and dynamic requirements. figure 6. ahb primary side key waveforms @ full load ch1: lvg pin voltage (yellow) ch3: hvg pin voltage (purple) ch4: primary windi ng current (green)
an3203 asymmetrical half bridge operation doc id 17402 rev 1 13/45 the signal hvg is the sum of the half bridge node (fgnd pin of l6591) and the high side gate driver voltages. this peculiarity allows both waveforms and the zvs operation for the high side mosfet to be checked. the driver activation is visible on the hvg signal when there is a small voltage step on the high part of the waveform. figure 7. ahb zero voltage s witching detail @ full load ch1: lvg pin voltage (yellow) ch3: hvg pin voltage (purple) ch4: primary windi ng current (green)
asymmetrical half bridge operation an3203 14/45 doc id 17402 rev 1 figure 8. ahb transitions de tail @ 20 % rated load ch1: lvg pin voltage (yellow) ch3: hvg pin voltage (purple) ch4: primary windi ng current (green) the key waveforms at the secondary side are shown in figure 9 . it is interesting to note that, while the current is swapped between the two sr mosfets, the voltage at their drain is nearly zero. the time required for current swap is directly proportional to the primary leakage inductance. as mentioned before, the effect of this phenomenon is the duty cycle losses.
an3203 asymmetrical half bridge operation doc id 17402 rev 1 15/45 figure 9. ahb seconda ry side key waveforms @ full load ch2: q201 and q202 drain pin (blue) ch3: fgnd pin voltage (purple) ch4: diode d13 current (green) in order to improve the overall efficiency of the power supply, synchronous rectification has been used. the two ahb output diodes have been replaced with two mosfets. a self driven technique has been used to obtain a cheap solution. two extra windings at the secondary side generate the two square waves that, opportunely shifted, drive the two sr mosfets gates directly. referring to q201, the extra winding (realized with just one turn) starts from transformer pin 10 and ends in ton_dr_flywire. c210, d204, and r216 are used to shift the voltage at the correct level to drive the mosfet. r202 helps to keep the mosfet off if no driving signal is applied. a similar circuit drives the gate of q202 starting from the toff_dr_flywire signal.
asymmetrical half bridge operation an3203 16/45 doc id 17402 rev 1 2.2 short-circuit protection in case of a short-circuit at the ahb output the overload protection (olp) is activated. figure 10 shows the pins involved in this function. when the short-circuit is applied, the comp pin saturates high. the ic detects this condition and starts charging the ss capacitor. when the ss voltage reaches 5 v the system is shut down, when it reaches 6.4 v the ic is latched. the pfc controller is also stopped: when the l6591 activates the protection, the pfc_stop signal pulls the l6563s run pin down to below the 0.8v threshold. the latch is kept th anks to the auxiliary stage that remains active and provides the vcc voltage. in order to restart the system it is necessary to recycle the l6591 vcc voltage between the uvlo thresholds. this can be done by removi ng the ps_on signal in the auxiliary stage. figure 10. short-circuit behavior detail ch1: ss pin voltage (yellow) ch2: comp pin voltage (blue) ch3: fgnd pin voltage, (purple) ch4: l6563s run pin voltage (green)
an3203 complete system doc id 17402 rev 1 17/45 3 complete system 3.1 overvoltage protection every output is protected against overvoltage. the +12 v, +5 v and +3.3 v are monitored on the auxiliary power supply schematic page. they use three zener diod es to fix the three overvoltage thresholds. in case one of the three voltages exceeds its threshold the latch realized with q604 and q605 is turned on and the vcc for the l6591 and l6563s is removed. the two outputs +5 v and +3.3 v also have an overvoltage protection integrated into the l6727 controller. the +5 v_sb output is protected using the ovp protection of the viper27h that senses its output voltage through the auxiliary winding. a threshol d on the cont pin detects the ovp condition and stops the ic operation. this protection has an auto-restart behavior. 3.2 load transients the following figures show the behavior of the outputs during load transients. each image shows the transition from 20 % to 100 % of rated current and vice versa for a single output voltage. the current slope is 0.5 a/s for all the current variations. figure 11. load transient on +12 v output
complete system an3203 18/45 doc id 17402 rev 1 figure 12. load transient on +5 v output figure 13. load transient on +3.3 v output 3.3 standby operation when the ps_on is not high, the system is in standby mode. good performance is obtained thanks to the viper27h high voltage converter. efficiency and no-load consumption values are shown in the next chapter.
an3203 electrical performance doc id 17402 rev 1 19/45 4 electrical performance 4.1 efficiency measurement and no-load consumption the efficiency measurements taken at the two nominal voltages are seen in the following tables. the +5 v_sb output was unloaded during these measurements. the 80 plus ? program fixes several efficiency levels that describe how energy-efficient a computer power supply is. the program defines the minimum efficiency requirements at 20 %, 50 %, 100 % of rated load and a minimum power factor requirement. according to the program a power supply could be classified in 4 levels: note: this table refers to power supplies for desktops, workstations, and non-redundant server applications with 115 vac mains table 1. efficiency @ 115 vrms load +12 v @load[a] +5 v @load[a] +3.3 v @load[a] pout [w] pin [w] eff [%] 20 % 12.13 2.702 5.02 2.409 3. 33 1.6 50.196 58.5 85.81 % 25 % 12.13 3.374 5.019 3.008 3. 329 2.004 62.695 71.97 87.11 % 50 % 12.13 6.749 5.012 6.007 3. 325 3.999 125.27 140.22 89.34 % 75 % 12.13 10.122 5.003 9.006 3. 318 6.008 187.77 211.19 88.91 % 100 % 12.12 13.5 4.996 12.003 3.313 8.001 250.09 285.41 87.63 % table 2. efficiency @ 230 vrms load +12 v @load[a] +5 v @load[a] +3.3 v @load[a] pout [w] pin [w] eff [%] 20 % 12.14 2.701 5.019 2.408 3. 329 1.599 50.199 58.62 85.63 % 25 % 12.14 3.374 5.018 3.008 3. 328 2.003 62.720 71.52 87.70 % 50 % 12.13 6.754 5.011 6.006 3.323 3.998 125.31 138.07 90.76 % 75 % 12.12 10.122 5.004 9.006 3.31 8 6.008 187.68 207.49 90.45 % 100 % 12.12 13.5 4.997 12.002 3.313 8.001 250.10 279.66 89.43 % table 3. 80 plus ? program efficiency levels level eff @ 20 % eff @ 50 % eff @ 100 % pf (@ load %) 80 plus > 80 % > 80 % > 80 % > 0.9 @ 100 % 80 plus bronze > 82 % > 85 % > 82 % > 0.9 @ 50 % 80 plus silver > 85 % > 88 % > 85 % > 0.9 @ 50 % 80 plus gold > 87 % > 90 % > 87 % > 0.9 @ 50 %
electrical performance an3203 20/45 doc id 17402 rev 1 this demonstration board is compliant with the 80 plus ? silver specifications (for pf data please refer to ta b l e 8 ). similar levels of efficiency and power fact or are defined also by the climate savers computing initiative. according to the measurements carried out, the demonstration board is compliant with ?climate savers computing silver? level. ta bl e 5 shows the no-load consumption. these values are taken with the signal ps_on kept low, therefore only the au xiliary stage is active and only the +5 v_sb output is present. the board showed very good values (below 200 mw over the whole input voltage range), especially when considering that the inactive stages have a certain residual consumption (only the voltage dividers in the input stage waste about 100 mw @ 230 vac). figure 14 shows the graph of the efficiency vs. output power while figure 15 shows the graph of the input power vs. input voltage with no-load applied. figure 14. efficiency vs. o/p power table 4. climate savers computing initiative load condition bronze silver gold efficiency pf efficiency pf efficiency pf 20 % 82 % 0.8 85 % 0.8 87 % 0.8 50 % 85 % 0.9 88 % 0.9 90 % 0.9 100 % 82 % 0.95 85 % 0.95 87 % 0.95 table 5. no-load consumption vin [vac] 90 115 135 180 230 264 pin [mw] 59 70 82 113 161 199
an3203 electrical performance doc id 17402 rev 1 21/45 figure 15. no-load consumption some measurements with low output loads were also taken. they refer only to the operation of the auxiliary stage, while the other stages are off. results are shown in ta b l e 6 and ta bl e 7 and plotted in figure 16 . the standby consumption allows the us executive order 13221 - ?1-watt standby? to be met. to be more precise, when the output power is reduced to 0.5 w, the input power is lower than 1 w (e fficiency greater than 50 %). this is a very common requirement for power supply manufacturers. table 6. low load efficiency @ 115 vrms vout [v] iout [ma] pout [w] pin [w] eff [%] 4.993 0.1 0.499 0.688 72.6 % 4.993 0.2003 1.000 1.312 76.2 % 4.993 0.3007 1.501 1.933 77.7 % 4.993 0.3996 1.995 2.544 78.4 % 4.993 0.5 2.497 3.163 78.9 % 4.993 0.6002 2.997 3.812 78.6 % 4.993 0.7006 3.498 4.501 77.7 % 4.993 0.7994 3.991 5.114 78.0 % 4.993 0.8998 4.493 5.664 79.3 % 4.993 1.0001 4.993 6.209 80.4 %
electrical performance an3203 22/45 doc id 17402 rev 1 figure 16. efficiency at low loads table 7. low load efficiency @ 230 vrms vout [v] iout [ma] pout [w] pin [w] eff [%] 4.994 0.1 0.499 0.826 60.5 % 4.994 0.2002 1.000 1.471 68.0 % 4.994 0.3006 1.501 2.13 70.5 % 4.994 0.3995 1.995 2.798 71.3 % 4.994 0.4999 2.497 3.486 71.6 % 4.994 0.6001 2.997 4.161 72.0 % 4.994 0.7006 3.499 4.806 72.8 % 4.994 0.7994 3.992 5.304 75.3 % 4.994 0.8997 4.493 5.934 75.7 % 4.994 1 4.994 6.667 74.9 % 50.0 % 55.0 % 60.0 % 65.0 % 70.0 % 75.0 % 8 0.0 % 8 5.0 % 0.0 1.0 2.0 3 .0 4.0 5.0 low load eciency (aux only) output power [w] 115v a c 2 3 0v a c
an3203 electrical performance doc id 17402 rev 1 23/45 4.2 thermal considerations this demonstration board has been designed fo r operation with forced air cooling, very common in atx power supply applications. as the component temperatures depend on the type of fan used and on the airflow path inside the board housing, a thermal map of the board isn?t significant and has not been taken. when the system works at 25 c with full load and no forced air, temperatures are not so high. if a heatsink with lower thermal resistance for mosfets q201 and q202 is used, fanless operation may be achieved. for example, the same shape of the heatsink used for d1, q1, q2, d3, q101, and q102 could be used for fanless operation. a picture of this application is shown in figure 17 . figure 17. fanless board
electrical performance an3203 24/45 doc id 17402 rev 1 4.3 harmonic content measurement the front-end pfc stage provides the reduction of the mains harmonic, allowing european en61000-3-2 and japanese jeita?miti standards for class d equipment to be met. figure 18 shows the harmonic contents of the mains current at full load. a measurement has also been taken with a 75 w input power which is the lowest limit for using harmonic reduction techniques. to evaluate the performance of the pfc stage the pf and thd vs. input voltage graphs are also shown, in figure 20 and figure 21 , at full load and 75 w input power load conditions. ta bl e 8 shows the pf values at the three different load amounts defined in the 80 plus ? and climate savers computing requirements. figure 18. en61000-3-2 and jeita-miti measurements @ full load figure 19. en61000-3-2 and jeita-miti measurements @ 75 w in
an3203 electrical performance doc id 17402 rev 1 25/45 figure 20. pf vs. input voltage figure 21. thd vs. input voltage table 8. pf vs. load load 115 vac 230 vac 20 % 0.972 0.857 50 % 0.984 0.954 100 % 0.992 0.981 0.800 0.825 0.850 0.875 0.900 0.925 0.950 0.975 1.000 80 120 160 200 240 280 pf vin [vrms] 250w out 75w in am025 3 9v1 am02540v1 0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00 80 120 160 200 240 280 thd [%] vin [vrms] 250w out 75w in
conducted noise measurements (pre-compliance test) an3203 26/45 doc id 17402 rev 1 5 conducted noise measurements (pre-compliance test) figure 22 , 23 , 24 , and 25 show the conducted noise measurements with peak and average detection taken at both nominal voltages. all the measurements are performed with full load output and only consider the worst phase. the average measurements show good margins with respect to the mask limit (which is the en55022 class b). figure 22. ce peak measurement@115 vac and full load figure 23. ce peak measurement @ 230 vac and full load
an3203 conducted noise measurements (pre-compliance test) doc id 17402 rev 1 27/45 figure 24. ce average measurement@115 vac and full load figure 25. ce average measurement@230 vac and full load
parts list an3203 28/45 doc id 17402 rev 1 6 parts list table 9. EVL250W-ATX80PL bill of materials ref value description manufacturer c1 220 f electrolytic capacitor vxg ? 450 v rubycon c2 100 nf polypropylene capacitor 450 v c3 1.0 f polypropylene capacitor 450 v ? ecwf2w105ja panasonic c4 1 f smd ceramic capacitor x7r ? 16 v avx c5 22 f electrolytic capacitor 25 v ? 105 c c6 0.1 f smd ceramic capacitor x7r ? 25 v avx c7 3.3 nf smd ceramic capacitor x7r ? 50 v avx c8 2.2 nf smd ceramic capacitor x7r ? 50 v avx c9 560 pf smd ceramic capacitor np0 ? 50 v avx c10 330 pf smd ceramic capacitor np0 ? 50 v avx c11 470 pf smd ceramic capacitor x7r ? 50 v avx c12 220 nf smd ceramic capacitor x7r ? 25 v avx c13 1 nf smd ceramic capacitor x7r ? 50 v avx c14 33 nf smd ceramic capacitor x7r ? 25 v avx c15 10 nf smd ceramic capacitor x7r ? 25 v avx c101 1.0 f polypropylene capacitor 450 v ? ecwf2w105ja panasonic c102 0.1 f smd ceramic capacitor x7r ? 25 v avx c103 22 f electrolytic capacitor 25 v ? 105 c c104 10 nf smd ceramic capacitor x7r ? 25 v avx c105 0.1 f smd ceramic capacitor x7r ? 25 v avx c106 220 pf smd ceramic capacitor np0 ? 50 v 1 % avx c107 10 nf smd ceramic capacitor x7r ? 25 v avx c108 470 nf smd ceramic capacitor x7r ? 16 v avx c109 0.1 f smd ceramic capacitor x7r ? 25 v avx c110 100 pf smd ceramic capacitor np0 ? 50 v avx c112 10 nf smd ceramic capacitor x7r ? 50 v avx c201 1500 f electrolytic capacitor hm ? 16 v nichicon c202 1500 f electrolytic capacitor hm ? 16 v nichicon c203 4.7 nf smd ceramic capacitor x7r ? 50 v avx c204 3.3 nf smd ceramic capacitor x7r ? 100 v avx c205 220 nf smd ceramic capacitor x7r ? 25 v avx c206 0.1 f smd ceramic capacitor x7r ? 25 v avx
an3203 parts list doc id 17402 rev 1 29/45 c207 470 f electrolytic capacitor zlh ? 16 v rubycon c208 0.1 f smd ceramic capacitor x7r ? 25 v avx c209 2.2 f smd ceramic capacitor x7r ? 25 v avx c210 2.2 f smd ceramic capacitor x7r ? 25 v avx c301 1500 f electrolytic capacitor hm ? 16 v nichicon c302 1500 f electrolytic capacitor hm ? 16 v nichicon c303 1500 f electrolytic capacitor hm ? 16 v nichicon c304 1.2 nf smd ceramic capacitor x7r ? 50 v avx c305 0.1 f smd ceramic capacitor x7r ? 25 v avx c306 4.7 f smd ceramic capacitor x7r ? 16 v avx c307 0.1 f smd ceramic capacitor x7r ? 25 v avx c308 1 nf smd ceramic capacitor x7r ? 50 v avx c309 10 nf smd ceramic capacitor x7r ? 25 v avx c310 2.2 nf smd ceramic capacitor x7r ? 50 v avx c311 100 f smd ceramic cap 6.3 v ? grm32ef50j107ze20k murata c312 100 f smd ceramic cap 6.3 v ? grm32ef50j107ze20k murata c313 10 f smd ceramic capacitor x7r ? 6.3 v avx c501 1500 f electrolytic capacitor hm ? 16 v nichicon c502 1500 f electrolytic capacitor hm ? 16 v nichicon c503 1500 f electrolytic capacitor hm ? 16 v nichicon c504 1.2 nf smd ceramic capacitor x7r ? 50 v avx c505 4.7 f smd ceramic capacitor x7r ? 16 v avx c506 0.1 f smd ceramic capacitor x7r ? 25 v avx c507 0.1 f smd ceramic capacitor x7r ? 25 v avx c508 10 nf smd ceramic capacitor x7r ? 25 v avx c509 1 nf smd ceramic capacitor x7r ? 50 v avx c510 2.2 nf smd ceramic capacitor x7r ? 50 v avx c511 100 f smd ceramic cap 6.3 v ? grm32ef50j107ze20k murata c512 100 f smd ceramic cap 6.3 v ? grm32ef50j107ze20k murata c513 10 f smd ceramic capacitor x7r ? 10 v avx c602 470 pf ceramic capacitor ? 1 kv c603 1500 f electrolytic capacitor hm ? 16 v nichicon c604 470 f electrolytic capacitor zlh ? 16 v rubycon c605 10 f electrolytic capacitor 50v ? 105 c c606 47 f electrolytic capacitor 35v ? 105 c table 9. EVL250W-ATX80PL bill of materials (continued) ref value description manufacturer
parts list an3203 30/45 doc id 17402 rev 1 c607 0.1 f smd ceramic capacitor x7r ? 25 v avx c608 10 nf smd ceramic capacitor x7r ? 25 v avx c609 0.1 f smd ceramic capacitor x7r ? 25 v avx c611 220 nf smd ceramic capacitor x7r ? 25 v avx c612 47 nf smd ceramic capacitor x7r ? 25 v avx c613 10 nf smd ceramic capacitor x7r ? 25 v avx c614 0.1 f smd ceramic capacitor x7r ? 25 v avx c615 10 nf smd ceramic capacitor x7r ? 25 v avx cn1 ac inlet 3.96 mm pitch kk series molex cx1 470 nf polypropylene x2 capacitor r46 ? 275 vac arcotronics cx3 680 nf polypropylene x2 capacitor r46 ? 275 vac arcotronics cy1 2n2 ceramic y1 capacitor ? de1e3kx222m murata cy2 2n2 ceramic y1 capacitor ? de1e3kx222m murata cy3 4n7 ceramic y1 capacitor ? de1e3kx472m murata d1 d15xb60 15a/600v bridge rectifier shindengen d2 1n5406 3a/600v rectifier d3 stpsc1006d 10a/600v silicon carbide schottky rectifier stmicroelectronics d4 1n4148ws fast switching diode d5 1n4148ws fast switching diode d6 1n4148 fast switching diode d101 ll4148 fast switching diode d102 ll4148 fast switching diode d103 stth1l06 1a/600v ultrafast high voltage rectifier stmicroelectronics d203 ll4148 fast switching diode d204 ll4148 fast switching diode d301 tmmbat43 small signal schottky diode stmicroelectronics d501 tmmbat43 small signal schottky diode stmicroelectronics d601 stth102a 1a/200v high efficiency ultrafast diode stmicroelectronics d602 bav103 switching diode d603 bav103 switching diode d604 stth108a 1a/800v high voltage ultrafast rectifier stmicroelectronics d605 stps5l60 5a/60v power sc hottky diode stmicroelectronics d606 bat48 small signal schottky diode stmicroelectronics d607 ll4148 fast switching diode d608 ll4148 fast switching diode table 9. EVL250W-ATX80PL bill of materials (continued) ref value description manufacturer
an3203 parts list doc id 17402 rev 1 31/45 d609 ll4148 fast switching diode f1 fuse - 10a fuse t10a ? time delay ic1 l6563s enhanced transition-mode pf c controller stmicroelectronics ic2 l6591 pwm controller for zvs half bridge stmicroelectronics ic3 viper27hn offline high voltage converters stmicroelectronics ic200 tl431aiz programmable voltage reference stmicroelectronics ic300 l6727 single phase pwm controller stmicroelectronics ic500 l6727 single phase pwm controller stmicroelectronics ic600 ts431aiz low voltage adjustable shunt reference stmicroelectronics l1 2x4 mh common mode choke 1606.0010 magnetica l2 2xjumper l3 60 h differential mode choke 1119.0013 magnetica l4 870 h pfc choke l5 0.75 h ahb post filter inductor 1019.0016 magnetica l201 3.7 h ahb output choke 2029.0002 magnetica l301 3.7 h dc-dc choke 2029.0001 magnetica l501 3.7 h dc-dc choke 2029.0001 magnetica l601 2.7 h aux stage post filter inductor 1048.0010 magnetica ntr1 2r5 ntc inrush current limiter b57237s0259m000 epcos opto1 pc817a optocoupler sharp opto2 pc817a optocoupler sharp opto3 pc817a optocoupler sharp q1 stf12nm50n 500 v mdmesh ii power mosfet stmicroelectronics q2 stf12nm50n 500 v mdmesh ii power mosfet stmicroelectronics q3 bc857c pnp small signal bjt q101 stf21nm50n 500 v mdmesh? ii power mosfet stmicroelectronics q102 stf21nm50n 500 v mdmesh? ii power mosfet stmicroelectronics q201 stp120nf04 40 v stripfet? ii power mosfet stmicroelectronics q202 stp75nf75fp 75 v stripfet? ii power mosfet stmicroelectronics q301 std95n2lh5 25 v stripfet? v power mosfet stmicroelectronics q302 std95n2lh5 25 v stripfet? v power mosfet stmicroelectronics q303 std95n2lh5 25 v stripfet? v power mosfet stmicroelectronics q501 std95n2lh5 25 v stripfet? v power mosfet stmicroelectronics q502 std95n2lh5 25v stripfet? v power mosfet stmicroelectronics q503 std95n2lh5 25 v stripfet? v power mosfet stmicroelectronics table 9. EVL250W-ATX80PL bill of materials (continued) ref value description manufacturer
parts list an3203 32/45 doc id 17402 rev 1 q601 mmbt3904 npn small signal bjt q603 mmbt3904 npn small signal bjt q604 mmbt3904 npn small signal bjt q605 mmbt3906 pnp small signal bjt r1 0r33 metal film resistor ? 5 % ? 250 ppm/c ? 2 w r2 0r33 metal film resistor ? 5 % ? 250 ppm/c ? 2 w r3 6.8 r smd film resistor ? 5 % ? 250 ppm/c ? 0805 r4 6.8 r smd film resistor ? 5 % ? 250 ppm/c ? 0805 r5 47 k smd film resistor ? 5 % ? 250 ppm/c ? 0603 r6 47 k smd film resistor ? 5 % ? 250 ppm/c ? 0603 r7 10 r smd film resistor ? 5 % ? 250 ppm/c ? 0603 r8 2.2 meg smd film resistor ? 1 % ? 100 ppm/c ? 1206 r9 2.2 meg smd film resistor ? 1 % ? 100 ppm/c ? 1206 r10 2.2 meg smd film resistor ? 1 % ? 100 ppm/c ? 1206 r11 51 k smd film resistor ? 1 % ? 100 ppm/c ? 0603 r12 1 meg smd film resistor ? 1 % ? 100 ppm/c ? 0603 r13 2.4 k metal film resistor ? 1% ? 100 ppm/c ? 0.16 w r14 6.8 k smd film resistor ? 1 % ? 100 ppm/c ? 0603 r15 2.4 k smd film resistor ? 1 % ? 100 ppm/c ? 0603 r16 220 k smd film resistor ? 1 % ? 100 ppm/c ? 0603 r17 1.5 meg smd film resistor ? 1 % ? 100 ppm/c ? 1206 r18 1.5 meg smd film resistor ? 1 % ? 100 ppm/c ? 1206 r19 1.5 meg smd film resistor ? 1 % ? 100 ppm/c ? 1206 r20 1.6 meg smd film resistor ? 1 % ? 100 ppm/c ? 1206 r21 1.6 meg smd film resistor ? 1% ? 100 ppm/c ? 1206 r22 1.6 meg smd film resistor ? 1 % ? 100 ppm/c ? 1206 r23 470 r smd film resistor ? 5 % ? 250 ppm/c ? 0603 r24 56 k smd film resistor ? 1 % ? 100 ppm/c ? 0603 r25 56 k smd film resistor ? 1 % ? 100 ppm/c ? 0603 r26 24 k smd film resistor ? 1 % ? 100 ppm/c ? 0603 r28 56 k smd film resistor ? 1 % ? 100 ppm/c ? 0603 r29 3.3 k smd film resistor ? 1 % ? 100 ppm/c ? 0603 r30 2.7 k smd film resistor ? 1 % ? 100 ppm/c ? 0603 r31 3.3 r smd film resistor ? 5 % ? 250 ppm/c ? 0805 r32 3.3 r smd film resistor ? 5 % ? 250 ppm/c ? 0805 table 9. EVL250W-ATX80PL bill of materials (continued) ref value description manufacturer
an3203 parts list doc id 17402 rev 1 33/45 r101 0.18 r metal film resistor ? 5 % ? 250 ppm/c ? 2 w r103 10 r smd film resistor ? 5 % ? 250 ppm/c ? 0603 r104 4.7 k smd film resistor ? 5 % ? 250 ppm/c ? 0603 r105 100 k smd film resistor ? 5 % ? 250 ppm/c ? 0603 r107 20 k smd film resistor ? 1 % ? 100 ppm/c ? 0603 r108 36 k smd film resistor ? 1 % ? 100 ppm/c ? 0603 r109 20 r smd film resistor ? 5 % ? 250 ppm/c ? 0805 r110 47 k smd film resistor ? 5 % ? 250 ppm/c ? 0603 r111 20 r smd film resistor ? 5 % ? 250 ppm/c ? 0805 r112 47 k smd film resistor ? 5 % ? 250 ppm/c ? 0603 r113 1 k metal film resistor ? 1 % ? 100 ppm/c ? 0.16 w r114 2.2 r smd film resistor ? 5 % ? 250 ppm/c ? 0603 r115 2.2 r smd film resistor ? 5 % ? 250 ppm/c ? 0603 r116 100 k smd film resistor ? 5 % ? 250 ppm/c ? 0603 r201 2.2 r smd film resistor ? 5 % ? 250 ppm/c ? 0805 r202 15 k smd film resistor ? 5 % ? 250 ppm/c ? 0805 r203 13 r metal film resistor ? 5 % ? 250 ppm/c ? 2 w r204 5.6 r metal film resistor ? 5 % ? 250 ppm/c ? 2 w r206 2.2 r smd film resistor ? 5 % ? 250 ppm/c ? 0805 r208 15 k smd film resistor ? 5 % ? 250 ppm/c ? 0805 r209 1 k smd film resistor ? 1 % ? 100 ppm/c ? 0603 r210 2.2 k smd film resistor ? 1 % ? 100 ppm/c ? 0603 r211 20 k smd film resistor ? 1 % ? 100 ppm/c ? 0603 r212 10 k smd film resistor ? 1 % ? 100 ppm/c ? 0603 r213 5.6 k smd film resistor ? 1 % ? 100 ppm/c ? 0603 r214 75 k smd film resistor ? 1 % ? 100 ppm/c ? 0603 r215 6.8 k smd film resistor ? 5 % ? 250 ppm/c ? sod-80 r216 10 k smd film resistor ? 5 % ? 250 ppm/c ? sod-80 r301 22 r smd film resistor ? 5 % ? 250 ppm/c ? 0805 r302 22 r smd film resistor ? 5 % ? 250 ppm/c ? 0805 r303 22 r smd film resistor ? 5 % ? 250 ppm/c ? 0805 r304 22 r smd film resistor ? 5 % ? 250 ppm/c ? 0805 r305 47 k smd film resistor ? 5 % ? 250 ppm/c ? 0603 r306 47 k smd film resistor ? 5 % ? 250 ppm/c ? 0603 r307 10 r smd film resistor ? 5 % ? 250 ppm/c ? 0603 table 9. EVL250W-ATX80PL bill of materials (continued) ref value description manufacturer
parts list an3203 34/45 doc id 17402 rev 1 r308 10 r smd film resistor ? 5 % ? 250 ppm/c ? 0603 r309 7.5 k smd film resistor ? 1 % ? 100 ppm/c ? 0603 r310 6.34 k smd film resistor ? 1 % ? 100 ppm/c ? 0603 r311 10 k smd film resistor ? 1 % ? 100 ppm/c ? 0603 r312 2 k smd film resistor ? 1 % ? 100 ppm/c ? 0603 r313 0 r smd film resistor ? 0603 r314 0 r smd film resistor ? 0805 r501 22 r smd film resistor ? 5 % ? 250 ppm/c ? 0805 r502 22 r smd film resistor ? 5 % ? 250 ppm/c ? 0805 r503 22 r smd film resistor ? 5 % ? 250 ppm/c ? 0805 r504 22 r smd film resistor ? 5 % ? 250 ppm/c ? 0805 r505 47 k smd film resistor ? 5 % ? 250 ppm/c ? 0603 r506 47 k smd film resistor ? 5 % ? 250 ppm/c ? 0603 r507 10 r smd film resistor ? 5 % ? 250 ppm/c ? 0603 r508 10 r smd film resistor ? 5 % ? 250 ppm/c ? 0603 r509 7.5 k smd film resistor ? 1 % ? 100 ppm/c ? 0603 r510 10 k smd film resistor ? 1 % ? 100 ppm/c ? 0603 r511 12.7 k smd film resistor ? 1 % ? 100 ppm/c ? 0603 r512 2.4 k smd film resistor ? 1 % ? 100 ppm/c ? 0603 r513 0 r smd film resistor ? 0603 r514 0 r smd film resistor ? 0805 r601 470 k smd film resistor ? 5 % ? 250 ppm/c ? 1206 r602 4.7 r smd film resistor ? 5 % ? 250 ppm/c ? 0805 r603 15 r smd film resistor ? 5 % ? 250 ppm/c ? 0805 r604 56 k smd film resistor ? 1 % ? 100 ppm/c ? 0603 r605 13 k smd film resistor ? 1 % ? 100 ppm/c ? 0603 r606 10 r smd film resistor ? 5 % ? 250 ppm/c ? 0805 r607 150 k smd film resistor ? 1 % ? 100 ppm/c ? 0603 r610 1 k smd film resistor ? 1 % ? 100 ppm/c ? 0603 r611 15 k smd film resistor ? 5 % ? 250 ppm/c ? 0603 r612 10 k smd film resistor ? 1 % ? 100 ppm/c ? 0603 r613 4.7 k smd film resistor ? 1 % ? 100 ppm/c ? 0603 r614 47 k smd film resistor ? 1 % ? 100 ppm/c ? 0603 r615 1.6 k smd film resistor ? 1 % ? 100 ppm/c ? 0603 r616 1 k smd film resistor ? 1 % ? 100 ppm/c ? 0603 table 9. EVL250W-ATX80PL bill of materials (continued) ref value description manufacturer
an3203 parts list doc id 17402 rev 1 35/45 r617 1 k smd film resistor ? 1 % ? 100 ppm/c ? 0603 r618 1.5 k smd film resistor ? 1 % ? 100 ppm/c ? 0603 r619 10 k smd film resistor ? 1 % ? 100 ppm/c ? 0603 r620 470 r smd film resistor ? 1 % ? 100 ppm/c ? 0603 r621 1 k smd film resistor ? 1 % ? 100 ppm/c ? 0603 r622 470 r smd film resistor ? 1 % ? 100 ppm/c ? 0603 r623 100 r smd film resistor ? 1 % ? 100 ppm/c ? 0603 r624 0 r smd film resistor ? 0603 r626 1 k smd film resistor ? 5 % ? 250 ppm/c ? 0603 r627 1.5 k smd film resistor ? 5 % ? 250 ppm/c ? 0805 r628 200 r smd film resistor ? 5 % ? 250 ppm/c ? 0805 rx1 680 k smd film resistor ? 5 % ? 250 ppm/c ? 1206 rx2 680 k smd film resistor ? 5 % ? 250 ppm/c ? 1206 t1 transformer ahb transformer 1965.0003 magnetica t2 transformer aux transformer 1031.0010 magnetica vdr1 varistor 300 vac ? s14k300 ? b72214s0301k101 epcos zd601 bzv55-b18 smd zener diode 18 v ? 2 % zd603 bzx55b5v1 zener diode 5v1 ? 2 % zd604 bzx55-b13 zener diode 13 v ? 2 % zd605 bzx55b2v7 zener diode 2v7 ? 2 % zd606 bzv55-b36 smd zener diode 36 v ? 2 % table 9. EVL250W-ATX80PL bill of materials (continued) ref value description manufacturer
pfc coil specification an3203 36/45 doc id 17402 rev 1 7 pfc coil specification application type: consumer, it transformer type: toroidal coil former: none max. temp. rise: 45 c max. operating ambient temp.: 60 c 7.1 electrical characteristics converter topology: boost, fixed off time core type: dong bu h106-093a min. operating frequency: 20 khz primary inductance: 870 h 15 % @1 khz - 0.25 v max peak current: 5.3 a pk max rms current: 3.37 a rms figure 26. electrical diagram figure 27. mechanical drawing (unit: mm) table 10. winding characteristics pins rms current nr. of turns wire type 1 ? 2 3.37 a rms 100.5 ? 1.0 mm ? g2
an3203 ahb transformer specification doc id 17402 rev 1 37/45 8 ahb transformer specification application type: consumer, it transformer type: open coil former: vertical type, 6+6 pins max. temp. rise: 45 c max. operating ambient temp.: 60 c mains insulation: compliance with en60950 8.1 electrical characteristics converter topology: asymmetrical half bridge core type: pq3230 ? pc44 or equivalent operating frequency: 80 khz primary inductance: 500 h 10 % @1 khz ? 0.25 v (a) air gap: 0.3 mm on central leg leakage inductance: 12 h typ. @100 khz ? 0.25 v (b) primary capacitance: 6 pf typ. (c) max. peak primary current: 3.85 a pk rms primary current: 2 a rms figure 28. electrical diagram a. measured between pins 2-4 b. measured between pins 2-4 with sec ondaries and auxiliary windings shorted c. calculated considering primar y inductance and resonance frequency
ahb transformer specification an3203 38/45 doc id 17402 rev 1 note: cover wire ends wit h silicon/teflon tube: use red tube for ton-dr-flyingwire use white tube for toff-dr-flyingwire figure 29. windings position 8.2 mechanical aspect and pin numbering maximum height from pcb: 33 mm coil former type: vertical, 6+6 pins pin distance: 5.08 mm row distance: 30.5 mm pin removed: # 5 manufacturer: magnetica p/n: 1754.0004 table 11. winding characteristics pins winding current nr. of turns wire type 4 ? 3 primary 2.1 a rms 34 tiw ? 2 x ? 0.4 mm 4 layers 9,10 ? 7,8 secondary 1 15 a rms 2 copper foil 0.2 x 17 mm 7,8 ? 11,12 secondary 2 19.7 a rms 3 copper foil 0.2 x 17 mm tonfw ? 9,10 sec.1 aux 0.1 a rms 1 ? 0.15 mm ? g2 11,12 ? tofffw sec.2 aux 0.1 a rms 1 ? 0.15 mm ? g2 coil former insulating tape 3mm 3mm secondary 1 primary secondary 2 sec. aux 1 & 2
an3203 ahb transformer specification doc id 17402 rev 1 39/45 figure 30. bottom view
aux flyback transformer specification an3203 40/45 doc id 17402 rev 1 9 aux flyback transformer specification application type: consumer, it transformer type: open coil former: vertical type, 5+5 pins max. temp. rise: 45 c max. operating ambient temp.: 60 c mains insulation: compliance with en60950 9.1 electrical characteristics converter topology: flyback, ccm/dcm mode core type: e20/10/6 (ef20) - n87 or equivalent operating frequency: 115 khz primary inductance: 1.7 mh 10 % @1 khz - 0.25 v (d) air gap: 1.24 mm on central leg leakage inductance: 50 h max. @100 khz - 0.25 v (e) max. peak primary current: 0.74 a pk rms primary current: 0.17 a rms figure 31. electrical diagram d. measured between pins 1-3 e. measured between pins 1-3 with sec ondaries and auxiliary windings shorted
an3203 aux flyback transformer specification doc id 17402 rev 1 41/45 note: primaries a & b are in series cover wire ends with teflon tube figure 32. windings position table 12. winding characteristics pins winding current nr. of turns wire type 4 ? a primary ? a 0.17 a rms 90 g2 ? ? 0.2 mm 2 layers 7,8 ? 9,10 secondary 2.8 a rms 11 tiw ? ? 0.8 mm 1 layer 1 ? 2 aux ? a 0.05 a rms 11 g2 ? ? 0.15 mm 1 layer 2 ? 3 aux ? b 0.05 a rms 28 a ? 5 primary ? b 0.17 a rms 90 g2 ? ? 0.2 mm 2 layers
aux flyback transformer specification an3203 42/45 doc id 17402 rev 1 9.2 mechanical aspect and pin numbering maximum height from pcb: 22 mm coil former type: vertical, 5+5 pins (pin 6 removed) pin distance: 3.81 mm row distance: 10.16 mm manufacturer: magnetica p/n: 1031.0010 figure 33. bottom view
an3203 pcb layout doc id 17402 rev 1 43/45 10 pcb layout figure 34. top side silk screen and copper figure 35. bottom side silk screen and copper (mirror view)
revision history an3203 44/45 doc id 17402 rev 1 11 revision history table 13. document revision history date revision changes 24-aug-2010 1 initial release
an3203 doc id 17402 rev 1 45/45 please read carefully: information in this document is provided solely in connection with st products. stmicroelectronics nv and its subsidiaries (?st ?) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described he rein at any time, without notice. all st products are sold pursuant to st?s terms and conditions of sale. purchasers are solely responsible for the choice, selection and use of the st products and services described herein, and st as sumes no liability whatsoever relating to the choice, selection or use of the st products and services described herein. no license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. i f any part of this document refers to any third party products or services it shall not be deemed a license grant by st for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoev er of such third party products or services or any intellectual property contained therein. unless otherwise set forth in st?s terms and conditions of sale st disclaims any express or implied warranty with respect to the use and/or sale of st products including without limitation implied warranties of merchantability, fitness for a parti cular purpose (and their equivalents under the laws of any jurisdiction), or infringement of any patent, copyright or other intellectual property right. unless expressly approved in writing by an authorized st representative, st products are not recommended, authorized or warranted for use in milita ry, air craft, space, life saving, or life sustaining applications, nor in products or systems where failure or malfunction may result in personal injury, death, or severe property or environmental damage. st products which are not specified as "automotive grade" may only be used in automotive applications at user?s own risk. resale of st products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by st for the st product or service described herein and shall not create or extend in any manner whatsoev er, any liability of st. st and the st logo are trademarks or registered trademarks of st in various countries. information in this document supersedes and replaces all information previously supplied. the st logo is a registered trademark of stmicroelectronics. all other names are the property of their respective owners. ? 2010 stmicroelectronics - all rights reserved stmicroelectronics group of companies australia - belgium - brazil - canada - china - czech republic - finland - france - germany - hong kong - india - israel - ital y - japan - malaysia - malta - morocco - philippines - singapore - spain - sweden - switzerland - united kingdom - united states of america www.st.com


▲Up To Search▲   

 
Price & Availability of EVL250W-ATX80PL

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X